A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petunia×hybrida cv. ‘Mitchell Diploid’ flower

نویسندگان

  • Thomas A. Colquhoun
  • Danielle M. Marciniak
  • Ashlyn E. Wedde
  • Joo Young Kim
  • Michael L. Schwieterman
  • Laura A. Levin
  • Alex Van Moerkercke
  • Robert C. Schuurink
  • David G. Clark
چکیده

Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is a complex and coordinate cellular process executed by petal limb cells of a Petunia×hybrida cv. 'Mitchell Diploid' (MD) plant. In MD flowers, the majority of benzenoid volatile compounds are derived from a core phenylpropanoid pathway intermediate by a coenzyme A (CoA) dependent, β-oxidative scheme. Metabolic flux analysis, reverse genetics, and biochemical characterizations of key enzymes in this pathway have supported this putative concept. However, the theoretical first enzymatic reaction, which leads to the production of cinnamoyl-CoA, has only been physically demonstrated in a select number of bacteria like Streptomyces maritimus through mutagenesis and recombinant protein production. A transcript has been cloned and characterized from MD flowers that shares high homology with an Arabidopsis thaliana transcript ACYL-ACTIVATING ENZYME11 (AtAAE11) and the S. maritimus ACYL-COA:LIGASE (SmEncH). In MD, the PhAAE transcript accumulates in a very similar manner as bona fide FVBP network genes, i.e. high levels in an open flower petal and ethylene regulated. In planta, PhAAE is localized to the peroxisome. Upon reduction of PhAAE transcript through a stable RNAi approach, transgenic flowers emitted a reduced level of all benzenoid volatile compounds. Together, the data suggest that PhAAE may be responsible for the activation of t-cinnamic acid, which would be required for floral volatile benzenoid production in MD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ODORANT1 Regulates Fragrance Biosynthesis in Petunia Flowers W

Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production ...

متن کامل

PhMYB4 fine-tunes the floral volatile signature of Petunia×hybrida through PhC4H

In Petunia × hybrida cv 'Mitchell Diploid' (MD), floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is controlled spatially, developmentally, and daily at molecular, metabolic, and biochemical levels. Multiple genes have been shown to encode proteins that either directly catalyse a biochemical reaction yielding FVBP compounds or are involved in metabolite flux prior to the formation ...

متن کامل

ODORANT1 regulates fragrance biosynthesis in petunia flowers.

Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production ...

متن کامل

A petunia chorismate mutase specialized for the production of floral volatiles.

In Petunia x hybrida cv. 'Mitchell Diploid' floral fragrance is comprised of 13 volatile benzenoids/phenylpropanoids derived from the aromatic amino acid phenylalanine. Several genes involved in the direct synthesis of individual floral volatile benzenoid/phenylpropanoid (FVBP) compounds, i.e. at the end of the pathway, have been isolated and characterized in petunia through reverse genetic and...

متن کامل

Understanding in vivo benzenoid metabolism in petunia petal tissue.

In vivo stable isotope labeling and computer-assisted metabolic flux analysis were used to investigate the metabolic pathways in petunia (Petunia hybrida) cv Mitchell leading from Phe to benzenoid compounds, a process that requires the shortening of the side chain by a C(2) unit. Deuterium-labeled Phe ((2)H(5)-Phe) was supplied to excised petunia petals. The intracellular pools of benzenoid/phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012